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ON THE NEWTON METHOD FOR THE MATRIX PTH ROOT∗

BRUNO IANNAZZO†

Abstract. Stable versions of Newton’s iteration for computing the principal matrix pth root
A1/p of an n × n matrix A are provided. In the case in which X0 is the identity matrix, it is
proved that the method converges for any matrix A having eigenvalues with modulus less than 1
and with positive real parts. Based on these results we provide a general algorithm for computing
the principal pth root of any matrix A having no nonpositive real eigenvalues. The algorithm has
quadratic convergence, is stable in a neighborhood of the solution, and has a cost of O(n3 log p)
operations per step. Numerical experiments and comparisons are performed.
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1. Introduction. A useful tool for solving nonlinear equations is the Newton
method,

xk+1 = xk − f(xk)

f ′(xk)

for an initial value x0. For the algebraic equation xp − a = 0, a ∈ C, it turns into

(1.1) xk+1 =
(p− 1)xk + ax1−p

k

p
.

As pointed out by Cayley in 1879 [4], the study of the convergence of this iteration
is very hard for p > 2. In fact the set of initial values such that the iteration (1.1)
converges to a specific root is a beautiful but complicated set, and its boundary is the
so-called Julia set of the iteration.

For A ∈ C
n×n, one can consider the matrix iteration

(1.2) Xk+1 =
(p− 1)Xk + AX1−p

k

p

for solving the matrix equation

(1.3) Xp −A = 0.

One of the most interesting solutions of (1.3) is the principal pth root A1/p of A whose
eigenvalues lie in the sector

(1.4) Sp = {z ∈ C\{0} , −π/p < arg z < π/p}.
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If A has no nonpositive real eigenvalues, then there exists a unique principal pth root.
Here and hereafter we refer to (1.2) as the simplified Newton iteration.

The main applications of the matrix pth root are for the computation of the
logarithm of a matrix and the sector function; for other applications, see [7, 11].

Convergence and stability properties of (1.2) are important issues which play a
fundamental role in the design of an algorithm for the matrix pth root. Hoskins and
Walton [12] and Smith [18] take as initial value the matrix A. Unfortunately, as
discussed in [18], this choice leads to a convergence region not nice enough to design
a simple global convergent method.

Concerning stability, Higham [8] and Smith [18] have shown that the simplified
Newton iteration is unstable. That is, a small perturbation Δ in Xk, say the one
generated by roundoff, may lead to divergence of the sequence obtained by replacing
Xk by Xk + Δ. Thus divergence may occur even though the computation of Xk is
performed with a numerically stable algorithm. This makes the iteration of almost
no practical use.

In this paper we present a suitable modification of the simplified Newton iteration
which guarantees stability. Moreover we prove that, choosing X0 = I, convergence
occurs for any A having eigenvalues in the set D = {z ∈ C : |z| = 1, Re z > 0}. This
restriction can be relaxed by means of a suitable scaling, and we provide an algorithm
which converges for any A for which A1/p is defined. The iteration that we obtain
in this way has quadratic convergence and a cost per step of O(n3 log p) arithmetic
operations (ops).

Regarding available algorithms, an efficient numerical method for the principal
pth root uses the Schur form and was originally proposed by Björck and Hammarling
[3] for the square root, then extended by Higham [9] who suggested using the real
Schur form for real matrices, and generalized by Smith [18] to the matrix pth root.
This method, implemented in the MATLAB toolbox [10], is numerically stable and
requires O(n3p) ops [11]. The p factor in the operation count is a drawback for large
p, and it is desirable to have methods whose cost grows more slowly with p. An
interesting analysis of computing the principal matrix pth root has been performed in
[2], where the problem is investigated in terms of structured matrix computations and
where the Newton iteration for the equation Xp−A−1 is proposed. Other methods can
be designed based on the identities A1/p = exp( 1

p logA), where the functions log(·)
and exp(·) are the matrix generalizations of the customary log and exp functions,
respectively [16].

The paper is organized in the following way. In section 2 we show that for X0 = I,
Newton’s iteration converges for any matrix A with eigenvalues in D. In section 3
we discuss instability issues and propose new variants of (1.2) which, while keeping
the same cost of O(n3 log p) ops, are proved to be stable in a neighborhood of the
solution. In section 4 we describe our general algorithm and discuss some related
computational issues. Finally in section 5 we present some numerical experiments
and compare our method with the Schur method and with the method based on
logarithm and exponential. These results confirm the numerical stability and the
overall good performance of the new algorithms.

In the rest of the paper we use the notation π/2p instead of π/(2p) for the sake
of readability.

Remark 1. It was observed in [12, 18] that if A has no nonpositive real eigenvalues
and if X0 commutes with A, then the iterates generated by (1.2) coincide with the
ones generated by the Newton method in the Banach algebra of the matrices n × n
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for the equation F (X) = Xp −A = 0; that is

(1.5) Xk+1 = Xk − F ′−1
Xk

(F (Xk)) ,

provided that the Xk are well defined. The symbol F ′
Xk

here denotes the Fréchet
derivative computed at the point Xk. Unfortunately, even if the Fréchet derivative
is nonsingular in a neighborhood of A1/p, for some choice of A and X0 the Newton
method (1.5) may break down while the simplified one (1.2) still can be applied. See,
for instance, [11].

For this reason we will not consider the general theory of the Newton method in
Banach algebras, but only the theory of rational iterations. In fact, this approach is
easily generalizable to root-finding algorithms different from the Newton method.

2. Convergence. For p > 2 rational iterations such as (1.1) have a complicated
behavior [14], and it is very difficult to describe the set of initial values for which the
iteration converges to a root. The matrix case has a similar behavior; indeed it can
be reduced to the scalar one.

Our goal is to determine the set of A ∈ C
n×n for which Newton’s iteration con-

verges to A1/p for an initial value X0. The usual choice X0 = A [12, 18] gives a
complicated convergence region; here we show that with X0 = I the convergence
region is more suitable for designing a globally convergent algorithm.

First, we consider A diagonalizable, i.e., A = M−1DM with D diagonal and M
nonsingular. The general case has similar behavior and will be discussed later. Since
X0 = I, all the iterates are diagonalizable and we may define Dk = MXkM

−1 so that
(1.2) becomes

(2.1) Dk+1 =
(p− 1)Dk + DD1−p

k

p
,

which involves only diagonal matrices, and is essentially n uncoupled scalar iterations
of the type

(2.2)

⎧⎨⎩ xk+1 =
(p− 1)xk + λx1−p

k

p
,

x0 = 1,

with λ being an eigenvalue of A.
Thus our main problem is to determine the set Bp of λ such that the iteration

(2.2) with x0 = 1 is well defined and converges to the principal pth root λ1/p, i.e., a
pth root of λ whose argument lies in the sector Sp of (1.4).

For any diagonalizable matrix A having eigenvalues in Bp, the Newton iteration,
with X0 = I, converges to A1/p. It is not surprising that the sets Bp, for p > 2, are
bounded by fractals similar to the Julia set of Newton’s iteration.

Some of these sets are sketched in Figure 2.1, in which we made a grid of 400×400
points corresponding to a discretization Q̂ of the square

Q = {z ∈ C,−3 ≤ Re z ≤ 3,−3 ≤ Im z ≤ 3}

and computed some steps of the Newton sequence (2.2) for λ ∈ Q̂. We plotted in
light gray the points λ for which the sequence xk converges to the principal pth root
of λ, and in dark gray the others.



506 BRUNO IANNAZZO

Fig. 2.1. A sketch of the region of convergence for p = 3, 5, 10, 100 and the set D of (2.3). In
light gray the points for which iteration (2.2) converges to their principal pth root.

It is easy to show, by means of standard arguments on the real Newton method,
that the positive real axis belongs to Bp for every p.

The following theorem synthesizes our main convergence result.

Theorem 2.1. The set Bp contains the set

(2.3) D = {z ∈ C ,Re z > 0, |z| ≤ 1}

for every p > 1.

Consequently if A has its eigenvalues in the set D, then the iteration (1.2), with
initial value X0 = I, is well defined and converges to A1/p.

For a general matrix A with no nonpositive real eigenvalues, the normalized matrix
square root B = A1/2/‖A1/2‖, where ‖ · ‖ is a generic matrix operator norm, has
eigenvalues in the set D. In fact for the spectral radius of B one has ρ(B) ≤ ‖B‖ = 1
and since the spectrum of A1/2 belongs to the right half-plane, the spectrum of B
belongs to the set D. Thus the Newton method applied to the matrix equation
Xp − B = 0, starting with X0 = I, converges to B1/p. Moreover, it is possible to
recover A1/p = (B1/p)2.

To prove Theorem 2.1, we use the following property.

Proposition 2.2. Let λ be a complex number with no nonpositive real part.
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Fig. 2.2. For p = 5 the set D of Theorem 2.1 (left) and the set D5 of Theorem 2.3 (right).

Then the sequence (2.2) converges to λ1/p if and only if the sequence

(2.4)

⎧⎨⎩ zk+1 =
(p− 1)zk + z1−p

k

p
,

z0 = λ−1/p

converges to 1.
Proof. The proof follows from the equation zk = xkλ

−1/p, which can be proved
by induction.

Observe that (2.4) is the Newton method applied to the equation xp − 1 = 0. A
similar trick was used in [2]. The above property provides a connection between the
set Bp and the basin of attraction of the root x = 1, which we denote by Ap(1). In
fact, a complex number a �= 0 belongs to Bp if and only if a−1/p belongs to Ap(1)∩Sp.

In this way, we can restate Theorem 2.1 in the following form.
Theorem 2.3. The set Ap(1) contains the set Dp = {z ∈ S2p , |z| ≥ 1} for every

p > 1, where Sp is defined in (1.4).
A graphical example of the swap between the two theorems is given in Figure 2.2.

2.1. Proof of Theorem 2.3. Define

(2.5) Np(z) =
(p− 1)zp + 1

pzp−1

for the Newton step and denote by N
(k)
p the k-fold composition N ◦ N ◦ · · · ◦ N .

Observe also that the function Np(z) is well defined in Dp.
The proof can be divided into two stages. First, we show that Theorem 2.3 holds

if two inequalities are satisfied. Second, we show the validity of such inequalities.
We consider three sets depending on the positive values ξp and Rp (see Figure

2.3):
1. a disk Ep = {z ∈ C, |z − 1| < Rp} of center 1 and radius Rp;
2. a mincing knife, Fp = {z ∈ C, 1 ≤ |z| < ξp, | arg(z)| ≤ π/2p};
3. a blunt wedge, Gp = {z ∈ C, |z| ≥ ξp, | arg(z)| ≤ π/2p}.

We provide an algebraic equation with real solution sp = 1 − Rp and such that
the disk Ep is contained in Ap(1); then we provide a second algebraic equation with

real solution ξp and such that each point of the set Gp is transformed by N
(k)
p into a

point in Fp for some k ≥ 1. Finally we show that given a point z in Fp, the supremum
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Fig. 2.3. The three sets used in the proof of Theorem 2.3 for the case p = 5: the circle of radius
1 − s5, the mincing knife (dash contour), and the blunt wedge (dash-dot contour).

of the distance of Np(z) from 1 is reached in the corners of the mincing knife. So, in
order to prove that the points in Fp are transformed into points in Ep, it is enough to
compute |Np(z)−1| in the corners of Fp and prove that these values are less than Rp.
These are the desired inequalities. In fact, by verifying such inequalities for a specific
value of p, one can easily verify that Dp ⊂ Fp ∪Gp is a subset of Ap(1), which is the
statement of Theorem 2.3.

We start by giving a way to find a disk centered at the point z = 1, such that
Newton’s iteration converges if x0 is in this disk.

Lemma 2.4. The equation

(2.6) (2p− 1)sp − 2psp−1 + 1 = 0

has a unique real solution sp in the open interval (0, 1) and for every z such that
|z − 1| < Rp = 1 − sp and z �= 1, it holds that |Np(z) − 1| < |z − 1|.

Proof. Let us start from inequality |Np(z) − 1| < |z − 1|, namely

(2.7)

∣∣∣∣ (p− 1)zp − pzp−1 + 1

pzp−1

∣∣∣∣ < |z − 1|.

The polynomial φp(z) = (p − 1)zp − pzp−1 + 1 can be factorized as φp(z) = ((p −
1)zp−2 + · · · + 3z2 + 2z + 1)(z − 1)2, and the inequality (2.7) becomes

(2.8)
|(p− 1)zp−2 + · · · + 3z2 + 2z + 1||z − 1|

|pzp−1| < 1, z �= 1.

Now,

|(p− 1)zp−2 + · · · + 2z + 1||z − 1|
|pzp−1| ≤ 1

p

(
p− 1

|z| + · · · + 2

|z|p−2
+

1

|z|p−1

)
|z − 1|.

If |z − 1| < 1 − s, then |z|n > sn for every n and the inequality (2.7) holds if

(2.9)
1

p

(
p− 1

s
+ · · · + 2

sp−2
+

1

sp−1

)
(1 − s) − 1 ≤ 0.
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Multiplying both sides of the above inequality by psp−1(1− s), with 0 < s < 1, yields
φp(s) − psp−1(1 − s) ≤ 0, that is,

(2.10) (2p− 1)sp − 2psp−1 + 1 ≤ 0.

It is not difficult to show that the function fp(s) = (2p − 1)sp − 2psp−1 + 1 has the
following properties: fp(0) > 0, fp(1) = 0, f ′

p(1) > 0, and fp has only a relative
minimum in the interval (0, 1). All these facts guarantee that the equation fp(s) = 0
has a unique solution sp in the interval (0, 1) and that the inequality (2.10) holds for
every sp ≤ s ≤ 1.

To conclude, we recall that |z − 1| < 1 − s, and so for 0 < |z − 1| < Rp = 1 − sp,
it holds that |Np(z)− 1| < |z− 1|, which was what we wanted to show. Moreover, we
have a constructive way to find Rp by solving the polynomial equation of (2.10) in
the interval (0, 1).

This lemma guarantees that for each positive real value R < Rp the closed disk of
center 1 and radius R belongs to Ap(1). Moreover, it holds that |Np(sp)−1| = |sp−1|
and then Lemma 2.4 is not true for any value R > Rp.

In order to prove that the set Dp is a subset of Ap(1), we split Dp into two subsets.
The former is sent by Np into the disk of convergence found above, and the latter
is sent into the former after some iterations. First, we give a technical lemma that
states that any point of a blunt wedge is transformed by Np into a point of the wedge.
This will be used to show that a point of modulus greater than 1 gets closer to 1,
after some iterations, but still remains in the sector.

Lemma 2.5. If |z| > 1 and z ∈ S2p, then |Np(z)| < |z| and |arg(Np(z))| ≤
|arg(z)|.

Proof. For the first statement, it is easy to show that |z| > 1 yields

|Np(z)| =

∣∣∣∣ (p− 1)

p
z +

1

pzp−1

∣∣∣∣ ≤ (p− 1)

p
|z| + 1

p|z|p−1
<

(p− 1)

p
|z| + 1

p
< |z|.

For the second statement, let z = reiθ with r > 1 and 0 < |θ| < π/2p; more-
over, let N(z) = r1e

iθ1 . Our goal is to prove that |θ1| ≤ |θ|, which is equivalent to
| tan θ1| ≤ | tan θ|. From the definition of Np it can be shown that

tan θ1 =
rp(p− 1) sin θ − sin((p− 1)θ)

rp(p− 1) cos θ + cos ((p− 1)θ)

so that inequality | tan θ1| ≤ | tan θ|, for θ > 0, becomes

(2.11) − sin θ

cos θ
≤ rp(p− 1) sin θ − sin((p− 1)θ)

rp(p− 1) cos θ + cos((p− 1)θ)
≤ sin θ

cos θ
.

By means of trigonometric identities, the second inequality of (2.11) is equivalent to
sin(pθ) ≥ 0, which is true because 0 < θ < π/2p.

The first inequality (2.11) is equivalent to

r ≥ p

√
sin((p− 2)θ)

(p− 1) sin(2θ)
,

which is true in the region we have considered, where r > 1, and

sin((p− 2)θ)

(p− 1) sin(2θ)
< 1.
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The case θ < 0 is analogous by symmetry, and the case θ = 0 is trivial.
Even if a point of the sector having modulus greater than a real number R > 1 is

transformed by the Newton step Np into another point in the sector, we need to cut
the wedge enough so that each point of the blunt wedge is transformed by Np into
a point of modulus greater than 1. In the next lemma, we find a real value ξp that
satisfies this condition and is the least in modulus.

Lemma 2.6. The equation

(2.12) (p− 1)2s2p − p2s2p−2 + 1 = 0

has a unique real solution 1 < ξp < 2. For every z ∈ S2p such that |z| > ξp, it holds
that |N(z)| > 1.

Proof. Let R ≥ 1 and let us consider the set K = {z ∈ C, |z| ≥ R, |arg(z)| ≤
π/2p}. The minimum of |Np(z)| on the set K is attained at the point z0 = Reiπ/2p.
In order to prove this, let z = reiθ and consider |Np(z)| as a function of θ. We have

fr(θ) = |Np(z)| =

∣∣∣∣ (p− 1)zp + 1

pzp−1

∣∣∣∣ =
1

prp−1
|(p− 1)rpeipθ + 1|.

Observe that fr(θ) is minimum for θ = π/2p. Moreover, since

g(r) = |Np(re
iπ/2p)|2 =

(p− 1)2r2p + 1

(prp−1)2

is increasing for r > 1, we deduce that the minimum of |Np(z)| is attained at the
corners of K and in particular at the point z0. Now, in order to prove that |Np(z)| ≥ 1,
we solve the equation |Np(se

iπ/2p)| = 1, that is,√
(p− 1)2s2p + 1

psp−1
= 1,

which yields (2.12). Now, it is not difficult to show that the function gp(s) =
(p− 1)2s2p − p2s2p−2 + 1 in (2.12) has the following properties: gp(1) < 0, g′p(1) < 0,
gp(2) > 0, and gp has only a critical point (a minimum) in the interval (1, 2). All
these facts guarantee that (2.12) has a unique solution ξp in the interval (1, 2). There-
fore, if |z| ≥ ξp, it holds that |Np(z)| ≥ |Np(ξpe

iπ/2p)| = 1 and this completes the
proof.

From Lemmas 2.5 and 2.6 we can conclude that a point of the set Dp having
modulus greater than ξp is sent, after some iterations, into a point of Dp having
modulus less than ξp.

Now, if the mincing knife

(2.13) Fp,R = {z ∈ C, 1 ≤ |z| ≤ R, |argz| ≤ π/2p},

with R = ξp, is sent into the ball |Np(z) − 1| < Rp, then the theorem is true.
In the next lemma, we show that the maximum of the function |Np(z)−1| on the

mincing knife is attained at one of the corners and so it is enough to check if these
four points are sent into the ball of convergence (for the symmetry of the problem we
need to check only two of them).

Lemma 2.7. Given a real number R > 1, the function f(z) = |Np(z)− 1| defined
on the set F = Fp,R of (2.13) takes its maximum at one of the corners of F .
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Proof. Let z = reiθ be a point of F . Observing that N(z) = N(z), it is enough
to consider the case θ ≥ 0.

We show that, restricted to the circle of radius r ≥ 1, the function f is nonde-
creasing with respect to θ (nonnegative), and hence the maximum lies on the segment
corresponding to θ = π/2p, 1 ≤ r ≤ R. Then, we show that the function is convex
in this segment and then takes its maximum at one of the two vertices, which are the
top corners.

To simplify the problem, consider the function

f̂(r, θ) = p2|Np(z) − 1|2 − p2

= (p− 1)2r2 +
1

r2p−2
+

2(p− 1)

rp−2
cos(pθ) − 2(p2 − p)r cos(θ) − 2p

rp−1
cos((p− 1)θ),

which has the same point of maximum of |Np(z) − 1| and is simpler.

First, consider the restriction of f̂ to an arc relative to a fixed value of r and
study the behavior with respect to θ.

Define gr(θ) = f̂(r, θ). We prove that gr(θ) is nondecreasing by showing that its
derivative,

g′r(θ) =
2p(p− 1)

rp−1
(sin((p− 1)θ) − r sin(pθ) + rp sin(θ)) ,

is nonnegative for 0 ≤ θ ≤ π/2p. From the sine addition formula, one has

(2.14) sin((p− 1)θ) − r sin(pθ) + rp sin(θ)

= sin((p− 1)θ)(1 − r cos(θ)) + r sin(θ)(− cos((p− 1)θ) + rp−1) ≥ 0,

and the last inequality follows from

r cos(θ) − 1

r(rp−1 − cos((p− 1)θ))
≤ r − 1

r(rp−1 − 1)
≤ 1

r
∑p−2

k=0 r
k
≤ 1

p− 1
≤ sin(θ)

sin((p− 1)θ))
,

where we used the fact that r ≥ 1 and that the inequality sin(nθ) ≤ n sin(θ) holds for
any positive integer n and 0 ≤ θ ≤ π/2p.

The inequality (2.14) implies that gr(θ) is nondecreasing for any r ≥ 1, and

then the maximum of f̂ (and of f) is assumed on the segment of F corresponding to
θ = π/2p.

Consider the function ϕ(r) = f(r, π/2p) on the interval [1, R]. We claim that
ϕ(r) is a convex function, namely ϕ′′(r) ≥ 0. Since cos(p π

2p ) = 0 and cos((p−1) π
2p ) =

sin(π/2p), it holds that

ϕ(r) = (p− 1)2r2 +
1

r2p−2
− 2p

rp−1
sin(π/2p) − 2p(p− 1)r cos(π/2p).

For its second derivative it holds that

ϕ′′(r) = 2(p− 1)2 +
2(p− 1)(2p− 1)

r2p
− 2p2(p− 1)

rp+1
sin(π/2p)

≥ 2(p− 1)2 +
2(p− 1)(2p− 1)

r2p
− 2(p− 1)(2p− 1)

rp+1
= h̃(r).

The inequality follows from p2 sin(π/2p) ≤ (2p− 1) for p ≥ 2.
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Now, h̃(r) is positive, and in fact can be rewritten as

2(p− 1)

r2p

(
rp−1(rp+1(p− 1) − 2p + 1) + 2p− 1

)
≥ 2(p− 1)

r2p

(
rp+1(p− 1)

)
≥ 0,

since rp−1 ≥ 1. The positivity of h̃ implies that the second derivative of ϕ(r) is positive
as well; then the function ϕ(r) is convex so that, restricted to any [a, b] ⊂ [1,+∞), it
takes its maximum at one of the edges a or b, and the proof is completed.

Finally we have a procedure to prove that for a value p > 1, Theorem 2.3 is true.
• Compute an approximation of Rp and ξp by means of some zero-finder method.
• Check if |Np(ξpe

iπ/2p) − 1| < Rp and |Np(e
iπ/2p) − 1| < Rp.

To conclude, it is enough to prove that the two inequalities are true for every
p ≥ 3 (the case p = 2 is relatively easy and was treated in [8]). We find an explicit
expression for a sequence bp ≤ Rp and a sequence ap ≥ ξp, and then we prove that

|Np(e
iπ/2p) − 1| < bp, |Np(ape

iπ/2p) − 1| < bp.

This is enough; in fact by Lemma 2.7 applied to the set Fp,ap , it holds that

|Np(ξpe
iπ/2p) − 1| ≤ |Np(ape

iπ/2p) − 1| < bp ≤ Rp.

We start with a lemma that gives explicitly values for ap and bp.
Lemma 2.8. The equation e−α(1+2α)−1 = 0 has a unique positive solution α0,

and it holds that

ξp ≤ ap =
p

p− 1
, Rp ≥ bp =

α

p

for every 0 < α ≤ α0.
Proof. ξp is the solution greater than 1 of gp(s) = 0, where gp = (p − 1)2s2p −

p2s2p−2 + 1 = s2p−2((p − 1)2s2 − p2) + 1. Now, gp(
p

p−1 ) = 1 > 0 and from the
arguments in the proof of Lemma 2.6, it follows that ap > ξp.

Concerning Rp, let us consider the polynomial fp = (2p− 1)sp − 2psp−1 + 1. The
number sp = 1 −Rp is the solution of the equation fp = 0 and 0 < sp < 1. From the
proof of Lemma 2.4, proving that fp(1 − bp) < 0 means that 1 − bp ≥ sp and then
bp ≤ Rp.

To find a lower bound to Rp of the type α/p, let us consider a generic 0 < α < 3
that yields

fp

(
1 − α

p

)
=

(
p− α

p

)p−1 (
α− (2α + 1)p

p

)
+ 1.

In order to have fp(1 − α/p) < 0, it is enough to prove that for every p > 2 the
sequence

dp =

(
p− α

p

)p−1 (
(2α + 1)p− α

p

)
is greater than 1. This sequence is decreasing for α > 0, as we will prove in Lemma
2.9, and its limit is e−α(1 + 2α). Therefore, fp(1 − α/p) > 1 if e−α(1 + 2α) > 1 and
this holds for each 0 < α ≤ α0, where α0 is the solution in (0, 3) of the equation
e−α(1 + 2α) = 1. It is easy to prove that this solution exists and is unique and that
α0 > 1.256.
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Lemma 2.9. The sequence dp of Lemma 2.8 is decreasing.
Proof. It is sufficient to prove that the function

f(x) =

(
x− α

x

)x−1 (
(2α + 1)x− α

x

)
is decreasing for x ≥ 3. For this purpose we prove that f ′(x) is negative. We have
f ′(x) = g(x)h(x) with h(x) trivially positive and

g(x) = log

(
x− α

x

)
+

(x− 1)α

x(x− α)
+

α

x((2α + 1)x− α)

is negative; in fact it is increasing and its limit to infinity is 0. To prove that g(x) is
increasing, it is enough to show that its derivative is positive, which holds by a direct
inspection.

Now we can finally complete the proof of our main theorem by means of the
following lemma.

Lemma 2.10. The two points of the corners of Fp,ap are sent by the Newton
iteration Np into points in the ball of center 1 and radius bp, i.e.,∣∣∣Np(e

iπ/2p) − 1
∣∣∣ < α0

p
,

∣∣∣∣Np

(
p

p− 1
eiπ/2p

)
− 1

∣∣∣∣ < α0

p
.

Proof. For the point z = eiπ/2p we have

|Np(z) − 1|2 =
1

p2

(
2p2 − 2p− 2 − 2p(p− 1) cos

(
π

2p

)
− 2p sin

(
π

2p

))
.

Since p > 2 and cos(x) ≥ 1 − x2/2 and sin(x) ≥ x− x3/6 for 0 < x < π/2,

p2|Np(z) − 1|2 ≤ 2p2 − 2p + 2 − (2p2 − 2p)

(
1 − π2

8p2

)
− 2p

(
π

2p
− π3

48p3

)
= 2 +

π2

4
− π +

(
π3

24p2
− π2

4p

)
≤ 2 +

π2

4
− π +

π3

24 · 9 < 1.47 < 1.57 < α2
0 = p2bp,

which is what we wanted to prove.
For the point z = ape

iπ/2p, setting γp = (p−1
p )p−1 = a1−p

p , one has

|Np(z) − 1|2 =
1

p2

(
2p2 + γ2

p − 2p2 cos

(
π

2p

)
− 2pγp sin

(
π

2p

))
.

It is possible to prove as in Lemma 2.9 that γp is a decreasing sequence that tends to
1/e; thus it holds that 1/e = γ∞ ≤ γp ≤ γ3 = 4/9.

Finally we have

p2|Np(z) − 1|2 ≤ 2p2 + γ2
3 − 2p2

(
1 − π2

8p2

)
− 2pγ∞

(
π

2p
− π3

48p3

)
=

(
4

9

)2

+
π2

4
− π

e
+

π3

24 · 9e
< 1.563 < 1.57 < α2

0 = p2bp.

This completes the proof.
A consequence of this proof is the applicability of the scalar Newton method

because the sequence zk of (2.4) never reaches zero in Dp, and so the sequence (2.2)
never reaches zero in D.
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2.2. Matrix convergence. We have shown that if the matrix A is diagonaliz-
able, then the iteration can be reduced to uncoupled scalar iterations, one for each
of the eigenvalues. In the general case, by means of the Jordan canonical form of A,
we may restrict our attention to the case where A ∈ C

n×n is a Jordan block, J(λ, n),
and λ belongs to the region D defined in (2.3).

In this case, define the functions gk(λ) as the kth iterate xk of the sequence
(2.2) and fk(z0) as the kth iterate zk of (2.4) and let φ(λ) = λ−1/p be defined on
the set C\(−∞, 0]. From Proposition 2.2 it follows that for any z ∈ C\(−∞, 0],
gk(z) = (fk ◦ φ)(z)z1/p. Observe that for the matrix iteration (1.2) with initial value
X0 = I, it holds that Xk = gk(J). We aim to prove that gk(J) converges to J1/p and
that the convergence is quadratic.

Let us recall that a function applied to a Jordan block is defined as [16, p. 311]

f(J) =

⎡⎢⎢⎢⎢⎣
f(λ) f ′(λ) . . . f(n−1)(λ)

(n−1)!

. . .
. . .

...
f(λ) f ′(λ)

0 f(λ)

⎤⎥⎥⎥⎥⎦ .

Then to prove Jordan block convergence from scalar convergence it is sufficient to
prove that

g
(n)
k (λ)

n!
−→ 1

n!

dn

dzn
z1/p

∣∣∣∣
z=λ

, n = 1, 2, 3, . . . .

We prove this fact in two steps. First, we show that the sequence gk(z) converges
uniformly on any compact subset of an open neighborhood of any point z belonging
to the set D of (2.3). Then, we show that the derivatives of gk evaluated at λ converge
to the derivative of the pth root function evaluated at λ and that the convergence of
gk(J) to J1/p is dominated by a quadratically convergent sequence.

We use the notation ‖f(x)‖K = supK |f(x)|.
Lemma 2.11. The sequence gk(z) converges uniformly to z1/p in any compact

subset of the set G = {z ∈ C ,Re z > 0, |z| < 1 + ε} for some ε > 0.
Proof. By the proof of Theorem 2.3, the set {z ∈ C, |z| ≥ 1, | arg z| ≤ π/2p} is

a subset of the immediate basin of attraction F for the fixed point 1 of the rational
iteration fk, which is open; thus the compact arc {|z| = 1, | arg z| ≤ π/2} admits
a finite open covering belonging to F and then there exists δ such that Gp = {z ∈
C, |z| > 1 − δ, | arg z| < π/2} is a subset of F and, from the properties of the Fatou
set [14, 1], the set {fk} is a normal family on Gp, and, by an easy argument it can be
shown that the sequence fk converges uniformly to 1 for any compact subset of Gp

(see [1, Thm. 6.3.1]).

Now, consider a compact set K̃ ⊂ G = {z ∈ C ,Re z > 0, |z| < (1 − δ)−p},
since φ(z) = z−1/p is a continuous map from the set G to the set Gp, φ(K̃) = K is
a compact subset of Gp, and, from what we said above, ‖fk(z) − 1‖K → 0. If we set
‖z1/p‖

K̃
= M , then

‖gk(z)− z1/p‖
K̃

= ‖z1/p((fk ◦φ)(z)−1)‖
K̃

≤ M‖(fk ◦φ)(z)−1‖
K̃

= M‖fk(z)−1‖K ,

and, since the last term tends to zero, the proof is thus achieved by choosing ε =
(1 − δ)−p − 1.
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To conclude, consider a compact neighborhood K ⊂ D of λ and a circle γ of
radius R, centered in λ and fully contained in K. The Cauchy formula yields∣∣∣∣∣g(k)

n (λ)

k!
− 1

k!

dk

dzk
z1/p

∣∣∣∣
z=λ

∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∮
γ

gn(z) − z1/p

(z − λ)k+1
dz

∣∣∣∣ ≤ 1

Rk
‖gn(z) − z1/p‖K → 0,

and then gn(J) converges to J1/p. Moreover, ‖gn(J)−J1/p‖∞ ≤ α‖fn(z)−1‖φ(K) for
some constant α, and the sequence fn(z) converges to 1 in any compact subset of Dp

and the convergence is quadratic (since it converges uniformly and in a neighborhood
of 1, it converges quadratically).

This approach can be generalized without any effort to any rational iteration
applied to a matrix.

3. Stable variants of the Newton method. Two stable iterations for the
matrix square root, that is, the Denman and Beavers iteration [6, 8]

(3.1)

⎧⎨⎩ X0 = A, Y0 = I,

Xk+1 =
1

2
(Xk + Y −1

k ), Yk+1 =
1

2
(Yk + X−1

k ), k = 0, 1, . . . ,

and the Meini iteration [17]

(3.2)

{
Y0 = I −A, Z0 = 2(I + A),
Yk+1 = −YkZ

−1
k Yk, Zk+1 = Zk − 2YkZ

−1
k Yk, k = 0, 1, . . . ,

are variants of the Newton iteration. In particular the latter can be rewritten as an
iteration for the increment [13]

(3.3)

⎧⎪⎨⎪⎩
X0 = A, H0 =

1

2
(I −A),

Xk+1 = Xk + Hk, Hk+1 = −1

2
HkX

−1
k+1Hk.

In fact, the instability of the simplified Newton iterations Xk+1 = (Xk+AX−1
k )/2

and Xk+1 = (Xk + X−1
k A)/2, shown by Higham [8], is mainly due to the pre- or post-

multiplication of X−1
k by A. On the other hand, since Xk commutes with A (see [13]),

the iteration can be rewritten as

(3.4) Xk+1 =
Xk + A1/2X−1

k A1/2

2

and also is stable in this new form, as one can see by a particular case of the analysis
made in section 3.1. Obviously (3.4) is useless since it involves the square root
of A, but it helps us to stabilize the iteration by introducing the variable Yk =
A−1/2XkA

−1/2 = A−1Xk = XkA
−1. The resulting iteration is that of Denman and

Beavers; we refer the reader to [13] for more details on this subject.
Repeating these arguments for the pth root, one has the simplified Newton iter-

ation Xk+1 = 1
p

(
(p− 1)Xk + AX1−p

k

)
or Xk+1 = 1

p

(
(p− 1)Xk + X1−p

k A
)
, which are

unstable as shown in [18]. We show in section 3.1 that, since the instability is due to
the one-sided multiplication by A, the modified equation

(3.5) Xk+1 =
(p− 1)Xk + (A1/pX−1)p−1A1/p

p
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provides in principle an iteration with optimal stability.
Now, with the square root in mind, we introduce the auxiliary variable Nk =

AX−p
k . It can be shown by induction that with the initial values X0 = I and N0 = A,

each of Xk, Nk, and A commutes with the others. This provides the following variant
of the simplified Newton iteration:

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X0 = I, N0 = A,

Xk+1 = Xk

(
(p− 1)I + Nk

p

)
,

Nk+1 =

(
(p− 1)I + Nk

p

)−p

Nk.

Observe that the matrix A does not explicitly appear in the iteration. We denote
with the acronym HWA (handled without A) iterations having this feature. Observe
that, while Xk converges to A1/p, the sequence Nk converges to the identity matrix.

On the other hand, one can introduce the increment

(3.7) Hk =
AX1−p

k −Xk

p
= −X1−p

k

p
(Xp

k −A) ,

where Xp
k −A is the residual at the step k. Note that Hk commutes with A and Xk.

From (3.7) we obtain A = (Xk + pHk)X
p−1
k , which allows us to write

Hk+1 = −
X1−p

k+1

p

(
Xp

k+1 −A
)

= −
X1−p

k+1

p

(
Xp

k+1 − (Xk + pHk)X
p−1
k

)
.

Now, because Xk+1 = Xk + Hk we obtain

(3.8) Hk+1 = −
X1−p

k+1

p

(
Xp

k+1 − (pXk+1 − (p− 1)Xk)X
p−1
k

)
= −

Xk+1X
−p
k+1

p

(
Xp

k+1 − pXk+1X
p−1
k + (p− 1)Xp

k

)
= −Xk+1

p

(
I − pX1−p

k+1X
p−1
k + (p− 1)Xp

kX
−p
k+1

)
.

Setting Fk = XkX
−1
k+1 we can write an iteration for the increment of the Newton

iteration

(3.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X0 = I, H0 =

(A− I)

p
,

Xk+1 = Xk + Hk, Fk = XkX
−1
k+1,

Hk+1 = −Xk+1

(
I − F p

k

p
+ F p−1

k (Fk − I)

)
,

where the expression for Hk+1 has been written in a form that reduces the phe-
nomenon of numerical cancellation.

Unfortunately, the iteration (3.9) does not reduce to (3.3) in the case of the square
root. A nicer form that generalizes (3.3) is
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(3.10)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X0 = I, H0 =

(A− I)

p
,

Xk+1 = Xk + Hk, Fk = XkX
−1
k+1

Hk+1 = −1

p
Hk(X

−1
k+1I + 2X−1

k+1Fk + 3X−1
k+1F

2
k + · · · + (p− 1)X−1

k+1F
p−2
k )Hk.

We call it incremental Newton (IN). Even if the form (3.10) is more symmetric than
(3.9), its computational cost is higher; in fact the computation of Hk+1 in the iteration
(3.10) can be performed in O(n3p) ops, and in the iteration (3.9), it can be performed
in O(n3 log p) ops.

3.1. Stability analysis. In accordance with [5] we define an iteration Xk+1 =
f(Xk) to be stable in a neighborhood of a solution X = f(X) if the error matrices
Ek = Xk −X satisfy

Ek+1 = L(Ek) + O(‖Ek‖2),

where L is a linear operator that has bounded powers; that is, there exists a constant
c > 0 such that for all n > 0 and arbitrary E of unit norm, Ln(E) < c. This means
that a small perturbation introduced in a certain step will not be amplified in the
subsequent iterations.

Note that this definition of stability is an asymptotic property and is different from
the usual concept of numerical stability, which concerns the global error propagation,
aiming to bound the minimum relative error over the computed iterates.

First, we show that the iteration (3.5) has optimal stability ; i.e., the operator L
coincides with the null operator. Then we show that the iterations (3.6) and (3.9) are
stable.

With Ek = Xk −A1/p, we have

(3.11) Ek+1 = Xk+1 −A1/p =
p− 1

p
Xk +

A1/pX−1
k · · ·A1/pX−1

k A1/p

p
−A1/p.

Now

X−1
k = (A1/p + Ek)

−1 = A−1/p −A−1/pEkA
−1/p + O(‖Ek‖2).

From this relation we obtain that

(3.12) A1/pX−1
k · · ·A1/pX−1

k A1/p = A1/p − (p− 1)Ek + O(‖Ek‖2).

Finally combining (3.11) and (3.12) yields

(3.13) Ek+1 =
p− 1

p
(A1/p+Ek)+

A1/p − (p− 1)Ek

p
−A1/p+O(‖Ek‖2) = O(‖Ek‖2),

which means that this iteration is stable, and the most stable possible according to
our definition because L = 0.

Now we consider the iteration (3.6) and introduce the error matrices Ek = Xk −
A1/p and Fk = Nk − I. For the sake of simplicity, we perform a first order error
analysis; that is, we omit all the terms that are quadratic in the errors. Equality up
to second order terms is denoted with the symbol

.
=.
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From Nk = I + Fk, one has

(3.14)

(
(p− 1)I + Nk

p

)−p
.
=

(
I +

Fk

p

)−p
.
= I − Fk,

and the relation for the errors becomes

(3.15)

[
Ek+1

Fk+1

]
.
=

[
I 1

pA
1/p

0 0

] [
Ek

Fk

]
= L

[
Ek

Fk

]
.

The coefficient matrix L is idempotent (L2 = L) and hence has bounded powers.
Thus the iteration is stable.

For the iteration (3.9) define the error matrices Mk = Xk −A1/p and Hk; then

(3.16) Mk+1 = Xk+1 −A1/p = Xk −A1/p + Hk = Mk + Hk.

For Hk+1 the relation is a bit more complicated.
Using (3.16) we can write

X−1
k+1 = (A1/p + Mk + Hk)

−1 .
= A−1/p −A−1/pMkA

−1/p −A−1/pHkA
−1/p

and

Fk = XkX
−1
k+1 = (A1/p + Mk)X

−1
k+1

.
= I −HkA

−1/p.

The latter equation enables us to write

(3.17) (XkX
−1
k+1)

q .
= (I −HkA

−1/p)q
.
= I − qHkA

−1/p.

Finally we have

Hk+1 = −Xk+1

(
I − F p

k

p
+ F p−1

k (Fk − I)

)
.
= −Xk+1

(
I − I + pHkA

−1/p

p
+ (I − (p− 1)HkA

−1/p)HkA
−1/p

)
.
= 0.

In conclusion it holds that

(3.18)

[
Mk+1

Hk+1

]
.
=

[
I I
0 0

] [
Mk

Hk

]
= L

[
Mk

Hk

]
.

Since the matrix L is idempotent, then also this iteration is stable. A similar result
holds for the iteration (3.10). Observe also that, unlike in the iteration (3.6), the
norm of L is independent of A.

Remark 2. The iteration analyzed in [2],

(3.19) Xk+1 =
1

p

(
(p + 1)Xk −Xp+1

k A
)
, X0 = I,

is obtained by applying Newton’s iteration to the equation X−p − A = 0, which has
the same convergence as the scalar iteration xk+1 =

(
(p+1)xk−xp+1

k λi

)
/p for x0 = 1,

applied to any eigenvalue λi of the matrix A.
Like any polynomial iteration of degree greater than 2, this one has the point x =

∞ as (super)attractive fixed point [1], and so the basins for the roots are considerably
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smaller than the ones for the Newton iteration for xp − a = 0. However, in [2] it is
proved that the basin of attraction to 1 contains a disk of center 1 and radius 1. In the
same paper, it is shown that the iteration (3.19) is unstable for general matrices. The
instability of this iteration can be easily removed by applying the arguments of this
section. In fact after simple manipulations we deduce the mathematically equivalent
iteration

(3.20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X0 = I, N0 = A,

Xk+1 = Xk

(
(p + 1)I −Nk

p

)
,

Nk+1 =

(
(p + 1)I −Nk

p

)p

Nk,

which is proved to be stable near the solution. One can see the similarity to the HWA

method.
The iteration (3.20) was already found by Lakić [15] as the first case of a family

of stable iterative methods for computing the inverse pth root.

4. The algorithm. Here we present our algorithm for computing the principal
pth root of a matrix having no nonpositive real eigenvalues. For p = 2 one can use
the existing algorithms [6, 17, 13], so we assume that we can perform the square root.

Algorithm 1 (iteration for the principal pth root of a matrix A).

• Input: a matrix A, an integer p > 2, and an algorithm for computing the
square root.

• Compute B, the principal square root of A.
• Set C = B/‖B‖ for a suitable norm. The eigenvalues of C belong to the set
D of (2.3)

• By means of iteration (3.6) or (3.9)
– If p is even, compute S = C2/p, the (p/2)th root of C, and set X =

S‖B‖2/p.
– If p is odd, compute S = C1/p, the pth root of C, and set X =(

S‖B‖1/p
)2

.
Observe that both iterations (3.6) and (3.9) can be performed in O(n3 log p) ops

per step, by means of the binary powering technique, much less than the cost of Schur
method which is O(n3p) ops. However, for small values of p, the total number of ops
needed by Algorithm 1 might be larger than the number of ops needed by the Schur
method.

For computing the square root, one can use the algorithm (3.3), possibly with a
suitable scaling if needed, or the Schur method; this does not affect the asymptotic
order of complexity with respect to p. In our numerical experiments, we have observed
that the choice of the square root algorithm used in preprocessing the matrix is crucial
for the accuracy of the computed solution. Using the Schur method for computing the
preliminary square root and then the iteration (3.6) gives good results comparable to
the ones obtained with the algorithm proposed by Smith [18]. In certain cases, it is
more convenient to use an iterative method such as (3.3), to compute the preliminary
square root.

More details can be given about the operation count and the number of steps
needed for the numerical convergence; in fact, two matrix multiplications, one inver-
sion, and a matrix exponentiation to the power p are sufficient to carry out one step of
the HWA iteration. For computing the power Xp, with X being a matrix, one can use
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the binary powering technique with a cost varying from log2 p� to 2log2 p� matrix
multiplications. The total cost of one step is then bounded by (3 + 2log2 p�)n3 ops.
For the IN iteration, the cost is (p+ 2)n3 ops per step, and for the iteration (3.9) the
cost is (5 + 2log2(p− 1)�)n3 ops per step.

As shown in section 2, the numerical convergence depends only on the localization
of the eigenvalues. The closer they are to the boundary of the basin of convergence, the
greater is the number of steps needed. For matrices of the form C = A1/2/‖A1/2‖,
having eigenvalues in the set D of (2.3), the slow convergence occurs when some
eigenvalue is near 0, namely, when the matrix A is ill-conditioned. For instance, if A is
a symmetric positive definite matrix and we use the 2-norm, it is easy to show that the
smallest eigenvalue of C is

√
1/μ2(A), where μ2(A) = ‖A‖2‖A−1‖2 is the condition

number of A. Being C diagonalizable by a unitary transform, the convergence of
the matrix iteration is the same as the convergence of its smallest eigenvalue. To
get an estimation of the number of steps needed by the Newton method applied to
a symmetric matrix, it is enough to compute the number of steps needed by the
sequence (1.1) with a =

√
1/μ2(A) to converge.

Even though the number of steps is a growing function of p, it seems bounded
from above by a constant.

Finally, it is important to point out that the algorithm we proposed works only
to find the principal pth root. It is not clear if it can be used to compute any primary
pth root, in particular, roots having eigenvalues in different sectors. One important
advantage of the Schur method is that it can be used to compute any primary pth
root, not just A1/p.

5. Numerical experiments. We have performed several experiments in
MATLAB 7. We have compared our algorithms with the simplified Newton (SN)
method (1.2), with the Schur method implemented in the function rootm of the Ma-
trix Computation Toolbox [10], and with the method based on the formula A1/p =
exp( 1

p log(A)), using the functions logm and expm of MATLAB (this method was

suggested by an anonymous referee).
For computing the square root of a matrix, we used the function sqrtm of MAT-

LAB, which is based on the Schur form of A, or the iteration (3.3), and if a scaling
is needed in (3.3) we used the one proposed in [13]. These algorithms have the same
asymptotic cost of O(n3).

To compute the power to −p in the iteration (3.6), first we compute the pth power
of the matrix with the binary powering technique and then we invert the matrix. We
stop the iterations when the residuals begin to grow or become NaN.

Test 1. To illustrate the instability near the solution of the SN method (1.2) and
the stability of the proposed variants, we consider the simple 3 × 3 matrix

A =

⎡⎣ 1 1/2 0
1/2 1 1/2
0 1/2 1

⎤⎦
and compute the fourth root of the matrix A4. In Figure 5.1 we have compared the
relative residual defined as R(X) = ‖Xp − A‖F /‖A‖F for the three methods: SN

of equation (1.2), Newton in the version (HWA) provided by equation (3.6), and IN

of equation (3.10). We denote by ‖A‖F the Frobenius norm of the matrix A, i.e.,
‖A‖F = (

∑n
i,j=1 a

2
ij)

1/2. As one can see, for some steps the three methods give the
same residual; in fact they are analytically equivalent, but the SN method has some
instability problems even after a few steps. Our methods show good stability.
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Fig. 5.1. Comparison of the simplified Newton (SN) method, the iteration handled without A
(HWA), and incremental Newton (IN).

Test 2. We consider some ill-conditioned matrices to compare the behavior
of Algorithm 1 with the one based on the Schur form of A and with the formula
A1/p = exp( 1

p log(A)). We also illustrate that the choice of the algorithm used for
computing the preliminary square root on Algorithm 1 is very important for the
numerical accuracy of the computed solution.

We compute pth root with four methods:
• Compute the square root with the function sqrtm in MATLAB and then the

iteration (3.6) to compute the pth root (sqrtm+HWA).
• Compute the square root by means of the IN iteration (3.3) and then the

iteration (3.6) to compute the pth root (IN+HWA).
• Compute the pth root with the algorithm based on the Schur form (Smith).
• Compute A1/p = exp( 1

p log(A)) (explog).
The first class of matrices we considered is the class of Hilbert matrices Hij =

1/(i + j) that is a traditional example of an ill-conditioned matrix. We denote by
hilb(n) the n-dimensional Hilbert matrix. The second class is the prolate matrix,
which is a symmetric ill-conditioned Toeplitz matrix whose entries are defined by the
formula Aii = 1/2, Aij = sin(π(j− i)/2)/(π(j− i)). We denote by prolate(n) the n-
dimensional prolate matrix. The third class is the Frank matrix, an upper Hessenberg
matrix with real, positive eigenvalues occurring in reciprocal pairs, half of which are
ill-conditioned. We denote by frank(n) the n-dimensional Frank matrix. The fourth
class is the companion matrix of the polynomial xn − 10−12, whose roots are the nth
root of 10−12. We denote by compan(n) the n-dimensional companion matrix.

In Table 5.1 we report the relative residuals and the number of iterations (for
HWA iteration) in computing the 59th root for some of these matrices. As one can see,
our algorithm, if provided with a Schur implementation for the preliminary square
root, is competitive with the Smith method and provides the same results, in terms
of accuracy, if tested with these ill-conditioned matrices. The explog algorithm gives
good results, but a bit worse than our algorithm in the hardest examples.

A purely iterative algorithm (the second column) suffers from very bad condi-
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Table 5.1

Comparison of methods for computing the 59th root of some test matrix.

Example sqrtm+HWA IN+HWA Smith explog

hilb(5) 6.6 · 10−15 11 4.4 · 10−15 11 3.1 · 10−14 8.5 · 10−15

hilb(10) 1.7 · 10−14 20 1.6 · 10−14 21 2.2 · 10−14 2.7 · 10−14

prolate(10) 1.6 · 10−14 14 2.1 · 10−14 12 3.3 · 10−14 2.2 · 10−14

prolate(20) 3.1 · 10−14 20 4.3 · 10−14 22 3.4 · 10−14 4.8 · 10−14

frank(10) 2.0 · 10−11 15 7.4 · 10−10 15 3.5 · 10−10 4.5 · 10−9

frank(14) 3.5 · 10−5 22 2.6 · 10−2 24 9.8 · 10−4 8.4 · 10−2

compan(5) 1.7 · 10−3 26 8.3 · 10−8 27 5.0 · 10−2 1.5 · 10−1

compan(15) 1.4 · 100 31 8.8 · 10−6 30 4.2 · 101 6.0 · 100

tioning of the matrix, but it is faster and in certain cases, like the examples of the
companion matrix, gives better results.

Note that when using the procedure described in section 4 for the Hilbert and
prolate matrices, which are symmetric, one has a predicted number of steps that
almost coincides with that of the examples.

Scaling the iteration for the preliminary square root was not necessary in these
examples, but it is worth remarking that sometimes it is important to use a scaling
technique in order to avoid poor results.
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